Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 9, 2027
-
Free, publicly-accessible full text available December 31, 2026
-
Free, publicly-accessible full text available November 10, 2026
-
ABSTRACT Drilling and tapping behaviors in woodpeckers have long garnered significant attention, given their extreme, high-impact nature. However, how these birds integrate neuromuscular and respiratory systems to produce such high-force, high-frequency behaviors remains poorly understood. Here, we combined electromyography with measures of respiratory air-sac pressure and syringeal airflow to investigate the neuromuscular and ventilatory mechanisms of forceful pecking in downy woodpeckers. We found that both types of pecking behaviors tested engage skeletal muscles across the head, neck, hips, tail and abdomen. In-depth analysis of EMG timing and activity point to a hammer-like model associated with drilling, whereby head and neck muscles contract to create a stiffened cephalo-cervical lever arm that efficiently transfers kinetic energy from the swinging bill into the wood. Moreover, hip flexors help power protraction of the head and body for drilling, whereas tail muscles presumably help brace the bird's body against the tree. Respiratory analyses show that woodpeckers actively exhale with each bill strike of the substrate, resembling the ‘grunting’ behavior that human athletes use to stabilize their core and enhance force output. These effects persist at high tapping frequencies, indicating that individuals take mini-breaths between successive taps. Altogether, our results highlight the way motor and respiratory systems are leveraged to facilitate the production of extreme behavior, which hinges on biomechanical specializations and extraordinary performance abilities.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Free, publicly-accessible full text available October 29, 2026
-
This article proves, in the case of split groups over arbitrary fields, that all fibers of convolution morphisms attached to parahoric affine flag varieties are paved by products of affine lines and affine lines minus a point. This applies in particular to the affine Grassmannian and to the convolution morphisms in the context of the geometric Satake correspondence. The second part of the article extends these results over $$\mathbb Z$$. Those in turn relate to the recent work of Cass-van den Hove-Scholbach on the geometric Satake equivalence for integral motives, and provide some alternative proofs for some of their results. Comment: 24 pages. Minor error corrected with the addition of Lemma 7.2. Lemma 7.3 added. Material on triviality of morphisms added to section 5. Minor changes in notation. Published versionmore » « lessFree, publicly-accessible full text available May 16, 2026
-
Abstract The first 2 weeks of December 2021 were exceptionally active for severe convective storms across the central and eastern United States. While previous work has indicated that this was related to the existence of a negative phase of the Pacific–North American pattern, we demonstrate that such a pattern was configured via dynamical linkages between multiple extratropical cyclogenesis events in the western North Pacific, the recurvature of Typhoon Nyatoh, and the subsequent phase evolution of the North Pacific jet. These processes were found to aid in the excitation of Rossby wave packets and the amplification of upper-level flow downstream over the Pacific, ultimately configuring synoptic-scale weather regimes supportive of anomalous high-frequency and high-intensity severe convective weather in the contiguous United States. In addition, abnormally warm Gulf of America/Gulf of Mexico sea surface temperatures, aided by a period of antecedent synoptic-scale subsidence, played a critical role in enhancing convective instability in the surface warm sector. This work underscores the importance of cataloging these events for purposes of examining (and potentially enhancing) predictability. Significance StatementThe first half of December 2021 recorded one of the most active cool-season severe weather periods in the United States, resulting in two billion-dollar convective outbreaks on 10 and 15 December. This study links these extreme events to upstream dynamical processes over the North Pacific, including extratropical cyclogenesis, the recurvature of Typhoon Nyatoh, and the retraction of the North Pacific jet. These processes amplified downstream flow and configured synoptic environments favorable for severe weather across the United States. Additionally, anomalously warm Gulf of America/Gulf of Mexico sea surface temperatures enhanced convective instability. By identifying these key precursors, this work highlights the potential for improved anticipation of extended-range severe weather likelihood—particularly during the cool season—when such events remain rare but highly impactful.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available July 1, 2026
-
ABSTRACT This article combines methods from existing techniques to identify multiple changepoints in non‐Gaussian autocorrelated time series. A transformation is used to convert a Gaussian series into a non‐Gaussian series, enabling penalized likelihood methods to handle non‐Gaussian scenarios. When the marginal distribution of the data is continuous, the methods essentially reduce to the change of variables formula for probability densities. When the marginal distribution is count‐oriented, Hermite expansions and particle filtering techniques are used to quantify the scenario. Simulations demonstrating the efficacy of the methods are given and two data sets are analyzed: 1) the proportion of home runs hit by Major League Baseball batters from 1920 to 2023 and 2) a six‐dimensional series of tropical cyclone counts from the Earth's basins of generation from 1980 to 2023. In the first series, beta marginal distributions are used to describe the proportions; in the second, Poisson marginal distributions seem appropriate.more » « lessFree, publicly-accessible full text available April 22, 2026
-
Abstract A rapidly deepening extratropical cyclone moved across the central Great Plains on 15 December 2021 and resulted in simultaneous extreme weather events. A derecho developed at the cold front and moved from the eastern half of Kansas to Wisconsin. Simultaneously, a nonconvective mesoscale windstorm occurred on the southwest side of the cyclone and moved from western to central Kansas and is the focus of this study. The windstorm downed power lines and triggered a wildfire outbreak covering over 160 000 ac (650 km2) resulting in two fatalities, several injuries, and the loss of hundreds of cattle. Surface wind gusts exceeded 50 kt (26 m s−1) over a large area in western Kansas with a peak gust of 87 kt (45 m s−1) observed at Russell, Kansas, on the southeast flank of the largest wildfire in the region. The extratropical cyclone resembled the Shapiro–Keyser conceptual model with the mesoscale windstorm focused near the cloud head and southern tip of the bent-back front southwest of the cyclone center. The near-surface wind speeds were highest where three airstreams—one along the bent-back front and the other two at higher altitudes to the west of the cyclone—descended and accelerated in a higher horizontal pressure gradient region near the tip of the bent-back front and cloud head. While the nonconvective mesoscale windstorm did not meet the exact definition of a sting jet, it exhibited many of the same characteristics and physical mechanisms that drive sting jets with oceanic Shapiro–Keyser cyclones.more » « lessFree, publicly-accessible full text available March 1, 2026
An official website of the United States government
